Part Number Hot Search : 
356VF5 DM74A 4VHC1G 0213800P 1117A TC74HC3 TC74HC3 TDA3840
Product Description
Full Text Search
 

To Download GS8662T09E-333 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  gs8662t08/09/18/36e-333/300/250/200/167 72mb sigmacio ddr-ii burst of 2 sram 333 mhz?167 mhz 1.8 v v dd 1.8 v and 1.5 v i/o 165-bump bga commercial temp industrial temp rev: 1.07 12/2007 1/36 ? 2005, gsi technology specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. features ? simultaneous read and write sigmacio? interface ? common i/o bus ? jedec-standard pinout and package ? double data rate interface ? byte write (x36 and x18) an d nybble write (x8) function ? burst of 2 read and write ? 1.8 v +100/?100 mv core power supply ? 1.5 v or 1.8 v hstl interface ? pipelined read operation with self-timed late write ? fully coherent read and write pipelines ? zq pin for programmable output drive strength ? ieee 1149.1 jtag-compliant boundary scan ? pin-compatible with present 9mb, 18mb, 36mb and future 144mb devices ? 165-bump, 15 mm x 17 mm, 1 mm bump pitch bga package ? rohs-compliant 165-bump bga package available sigmacio ? family overview the gs8662t08/09/18/36e are built in compliance with the sigmacio ddr-ii sram pinout standard for common i/o synchronous srams. they are 75,497,472-bit (72mb) srams. the gs8662t08/09/18/36e sigmacio srams are just one element in a family of low power, low voltage hstl i/o srams designed to operat e at the speeds needed to implement economical high perf ormance networking systems. clocking and addressing schemes the gs8662t08/09/18/36e sigmacio ddr-ii srams are synchronous devices. they employ two input register clock inputs, k and k . k and k are independent single-ended clock inputs, not differential inputs to a single differential clock input buffer. the device also allows the user to manipulate the output register clock inputs quasi independently with the c and c clock inputs. c and c are also independent single-ended clock inputs, not differential inputs. if the c clocks are tied high, the k clocks are routed internally to fire the output registers instead. common i/o x36 and x18 sigmacio ddr-ii b2 rams always transfer data in two packets. when a new address is loaded, a0 presets an internal 1 bit address counter. the counter increments by 1 (toggles) for each beat of a burst of two data transfer. common i/o x8 sigmacio ddr-ii b2 rams always transfer data in two packets. when a new address is loaded, the lsb is internally set to 0 for the first read or write transfer, and incremented by 1 for the next tr ansfer. because the lsb is tied off internally, the address field of a x8 sigmacio ddr-ii b4 ram is always one addre ss pin less than the advertised index depth (e.g., the 4m x 18 has a 2048k addressable index). parameter synopsis -333 -300 -250 -200 -167 tkhkh 3.0 ns 3.3 ns 4.0 ns 5.0 ns 6.0 ns tkhqv 0.45 ns 0.45 ns 0.45 ns 0.45 ns 0.5 ns 165-bump, 15 mm x 17 mm bga 1 mm bump pitch, 11 x 15 bump array bottom view
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 2/36 ? 2005, gsi technology 2m x 36 sigmacio ddr-ii sram?top view 1 2 3 4 5 6 7 8 9 10 11 a cq mcl/sa (144mb) sa r/ w bw2 k bw1 ld sa sa cq b nc dq27 dq18 sa bw3 k bw0 sa nc nc dq8 c nc nc dq28 v ss sa sa0 sa v ss nc dq17 dq7 d nc dq29 dq19 v ss v ss v ss v ss v ss nc nc dq16 e nc nc dq20 v ddq v ss v ss v ss v ddq nc dq15 dq6 f nc dq30 dq21 v ddq v dd v ss v dd v ddq nc nc dq5 g nc dq31 dq22 v ddq v dd v ss v dd v ddq nc nc dq14 h doff v ref v ddq v ddq v dd v ss v dd v ddq v ddq v ref zq j nc nc dq32 v ddq v dd v ss v dd v ddq nc dq13 dq4 k nc nc dq23 v ddq v dd v ss v dd v ddq nc dq12 dq3 l nc dq33 dq24 v ddq v ss v ss v ss v ddq nc nc dq2 m nc nc dq34 v ss v ss v ss v ss v ss nc dq11 dq1 n nc dq35 dq25 v ss sa sa sa v ss nc nc dq10 p nc nc dq26 sa sa c sa sa nc dq9 dq0 r tdo tck sa sa sa c sa sa sa tms tdi 11 x 15 bump bga?13 x 15 mm 2 body?1 mm bump pitch notes: 1. bw0 controls writes to dq0:dq8; bw1 controls writes to dq9:dq17; bw2 controls writes to dq18:dq26; bw3 controls writes to dq27:dq35 2. mcl = must connect low
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 3/36 ? 2005, gsi technology 4m x 18 sigmacio ddr-ii sram?top view 1 2 3 4 5 6 7 8 9 10 11 a cq sa sa r/ w bw1 k nc ld sa sa cq b nc dq9 nc sa nc k bw0 sa nc nc dq8 c nc nc nc v ss sa sa0 sa v ss nc dq7 nc d nc nc dq10 v ss v ss v ss v ss v ss nc nc nc e nc nc dq11 v ddq v ss v ss v ss v ddq nc nc dq6 f nc dq12 nc v ddq v dd v ss v dd v ddq nc nc dq5 g nc nc dq13 v ddq v dd v ss v dd v ddq nc nc nc h doff v ref v ddq v ddq v dd v ss v dd v ddq v ddq v ref zq j nc nc nc v ddq v dd v ss v dd v ddq nc dq4 nc k nc nc dq14 v ddq v dd v ss v dd v ddq nc nc dq3 l nc dq15 nc v ddq v ss v ss v ss v ddq nc nc dq2 m nc nc nc v ss v ss v ss v ss v ss nc dq1 nc n nc nc dq16 v ss sa sa sa v ss nc nc nc p nc nc dq17 sa sa c sa sa nc nc dq0 r tdo tck sa sa sa c sa sa sa tms tdi 11 x 15 bump bga?13 x 15 mm 2 body?1 mm bump pitch notes: 1. bw0 controls writes to dq0:dq8; bw1 controls writes to dq9:dq17 2. mcl = must connect low
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 4/36 ? 2005, gsi technology 8m x 9 sigmacio dd r-ii sram?top view 1 2 3 4 5 6 7 8 9 10 11 a cq sa sa r/ w nc k nc ld sa sa cq b nc nc nc sa nc k bw sa nc nc dq4 c nc nc nc v ss sa sa sa v ss nc nc nc d nc nc nc v ss v ss v ss v ss v ss nc nc nc e nc nc dq5 v ddq v ss v ss v ss v ddq nc nc dq3 f nc nc nc v ddq v dd v ss v dd v ddq nc nc nc g nc nc dq6 v ddq v dd v ss v dd v ddq nc nc nc h doff v ref v ddq v ddq v dd v ss v dd v ddq v ddq v ref zq j nc nc nc v ddq v dd v ss v dd v ddq nc dq2 nc k nc nc nc v ddq v dd v ss v dd v ddq nc nc nc l nc dq7 nc v ddq v ss v ss v ss v ddq nc nc dq1 m nc nc nc v ss v ss v ss v ss v ss nc nc nc n nc nc nc v ss sa sa sa v ss nc nc nc p nc nc dq8 sa sa c sa sa nc nc dq0 r tdo tck sa sa sa c sa sa sa tms tdi 11 x 15 bump bga?13 x 15 mm 2 body?1 mm bump pitch notes: 1. unlike the x36 and x18 versions of this dev ice, the x8 and x9 versions do not give the user access to a0. sa0 is set to 0 at the beginning of each access. 2. mcl = must connect low
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 5/36 ? 2005, gsi technology 8m x 8 sigmacio dd r-ii sram?top view 1 2 3 4 5 6 7 8 9 10 11 a cq sa sa r/ w nw1 k nc ld sa sa cq b nc nc nc sa nc k nw0 sa nc nc dq3 c nc nc nc v ss sa sa sa v ss nc nc nc d nc nc nc v ss v ss v ss v ss v ss nc nc nc e nc nc dq4 v ddq v ss v ss v ss v ddq nc nc dq2 f nc nc nc v ddq v dd v ss v dd v ddq nc nc nc g nc nc dq5 v ddq v dd v ss v dd v ddq nc nc nc h doff v ref v ddq v ddq v dd v ss v dd v ddq v ddq v ref zq j nc nc nc v ddq v dd v ss v dd v ddq nc dq1 nc k nc nc nc v ddq v dd v ss v dd v ddq nc nc nc l nc dq6 nc v ddq v ss v ss v ss v ddq nc nc dq0 m nc nc nc v ss v ss v ss v ss v ss nc nc nc n nc nc nc v ss sa sa sa v ss nc nc nc p nc nc dq7 sa sa c sa sa nc nc nc r tdo tck sa sa sa c sa sa sa tms tdi 11 x 15 bump bga?13 x 15 mm 2 body?1 mm bump pitch notes: 1. unlike the x36 and x18 versions of this dev ice, the x8 and x9 versions do not give the user access to a0. sa0 is set to 0 at the beginning of each access. 2. nw0 controls writes to dq0:dq3; nw1 controls writes to dq4:dq7 3. mcl = must connect low
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 6/36 ? 2005, gsi technology notes: 1. nc = not connected to die or any other pin 2. c, c , k, or k cannot be set to v ref voltage. pin description table symbol description type comments sa synchronous address inputs input ? nc no connect ? ? r/ w synchronous read/write input ? bw0 ? bw3 synchronous byte writes input active low x18/x36 only nw0 ? nw1 nybble write control pin input active low x8 only ld synchronous load pin input active low k input clock input active high k input clock input active low c output clock input active high c output clock input active low tms test mode select input ? tdi test data input input ? tck test clock input input ? tdo test data output output ? v ref hstl input reference voltage input ? zq output impedance matching input input ? mcl must connect low ? ? dq data i/o input/output three state doff disable dll when low input active low cq output echo clock output ? cq output echo clock output ? v dd power supply supply 1.8 v nominal v ddq isolated output buffer supply supply 1.5 v nominal v ss power supply: ground supply ?
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 7/36 ? 2005, gsi technology background common i/o srams, from a system architectur e point of view, are attractiv e in read dominated or bl ock transfer applications. therefore, the sigmacio ddr-ii sram in terface and truth table are optimized for burst reads and writes. common i/o srams are unpopular in ap plications where alternating reads and writes are needed because bus tu rnaround delays can cut high speed common i/o sram data bandwidth in half. burst operations read and write operations are "burst" oper ations. in every case where a read or write command is accepted by the sram, it will respond by issuing or accepting two beats of da ta, executing a data transfer on subseque nt rising edges of k and k#, as illustr ated in the timing diagrams. it is not possible to stop a burst once it starts. two beats of data are always transferred. this means that it is possible to load new addresses ev ery k clock cycle. addresses can be loaded less often, if intervening de select cycles are inse rted. deselect cycles chip deselect commands are pipelined to the same degree as read commands. this means th at if a deselect command is applied to the sram on the next cycle after a read command captured by the sr am, the device will complete the two beat read data transfer and then execute the deselect co mmand, returning the output drivers to high-z. a high on the ld# pin prevents the ram from loading read or write command inputs and puts the ram into dese lect mode as soon as it completes all outstanding burst transfer operations. sigmacio ddr-ii b2 sram read cycles the sram executes pipelined reads. the stat us of the address, ld# and r/w# pins ar e evaluated on the rising edge of k. the read command (ld# low and r/w# high) is clocked into the sram by a rising edge of k. after the next rising edge of k, the sram produces data out in response to the next rising edge of c# (or the next rising edge of k# , if c and c# are tied high). th e second beat of data is transferred on the next rising e dge of c, for a total of two transfers per address load. sigmacio ddr-ii b2 sram write cycles the status of the address, ld# and r/w# pins are evaluated on the rising edge of k. the sram executes "late write" data transfers. data in is due at the device inputs on the rising edge of k following the rising edge of k clock used to clock in th e write command (ld# and r/w# low) and the write ad dress. to complete the remaining beat of the burst of two write transfer, the sram captures data in on the next rising edge of k#, for a total of two transfers per address load.
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 8/36 ? 2005, gsi technology power-up sequence fo r sigmaquad-ii srams sigmaquad-ii srams must be powered-up in a specifi c sequence in order to avoid undefined operations. power-up sequence 1. power-up and maintain doff at low state. 1a. apply v dd . 1b. apply v ddq . 1c. apply v ref (may also be applied at the same time as v ddq ). 2. after power is achieved and clocks (k, k , c, c ) are stablized, change doff to high. 3. an additional 1024 clock cycl es are required to lock the dll after it has been enabled. note: the dll may be reset by driving the doff pin low or by stopping the k clocks fo r at least 30 ns. 1024 cycles of clean k clocks are always required to re- lock the dll after reset. dll constraints ? the dll synchronizes to either k or c clock. these clocks should have low phase jitter (t kcvar ). ? the dll cannot operate at a frequency lower than that specified by the t khkh maximum specification for the desi red operating clock frequency. ? if the incoming clock is not stablized when dll is enabled, the dll may lock on th e wrong frequency and cause undefined errors or failures during the initial stage. power-up sequence ( doff controlled) power-up sequence ( doff tied high) note: if the frequency is changed, dll reset is required. after reset, a minimum of 1024 cycles is required for dll lock. power up interval unstable clocking interval dll locking interval (1024 cycles) normal operation k k v dd v ddq v ref doff power up interval unstable clocking interval stop clock interval dll locking interval (1024 cycles) normal operation k k v dd v ddq v ref doff 30ns min
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 9/36 ? 2005, gsi technology special functions byte write and nybble write control byte write enable pins are sampled at the same time that data in is sampled. a high on the byte write enable pin associated wit h a particular byte (e.g., bw0 controls d0?d8 inputs) will inhibit the storage of that particular byte, leaving whatever data may be stored at the current address at that byte location undisturbed. a ny or all of the byte write enable pins may be driven high or low during the data in sample times in a write sequence. each write enable command and write addres s loaded into the ram provides the base ad dress for a 2 beat data transfer. the x18 version of the ram, for example, may write 36 bits in associatio n with each address loaded. any 9-bit byte may be masked in any write sequence. nybble write (4-bit) write control is implemented on the 8-bit-wi de version of the device. for the x8 version of the device, ?nybble write enable? and ? nbx ? may be substituted in all the discussion above. resulting write operation output register control sigmacio ddr-ii srams offer two mechanisms for controlling the output data registers. typically, control is handled by the output register clock inputs, c and c . the output register clock inputs can be used to make small phase adjustments in the firing of the output registers by allowing the user to delay driving data out as much as a few nanoseconds beyond the next rising edge s of the k and k clocks. if the c and c clock inputs isare tied hi gh, the ram reverts to k and k control of the outputs, allowing the ram to function as a conventional pipelined read sram. example x18 ram write sequence using byte write enables data in sample time bw0 bw1 d0?d8 d9?d17 beat 1 0 1 data in don?t care beat 2 1 0 don?t care data in byte 1 d0?d8 byte 2 d9?d17 byte 3 d0?d8 byte 4 d9?d17 written unchanged unchanged written beat 1 beat 2
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 10/36 ? 2005, gsi technology example four bank depth expansion schematic a k r/w ld a 0 ?a n k bank 0 bank 1 bank 2 bank 3 a k ld a k ld a k ld r/w r/w r/w dq dq dq dq cc cc dq 1 ? c r/w ld 0 ld 1 ld 2 ld 3 note: for simplicity bwn (or nwn) , k , and c are not shown. cq cq cq cq cq
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 11/36 ? 2005, gsi technology flxdrive-ii output driver impedance control hstl i/o sigmaquad-ii srams are supplied with programmable impedance output drivers. the zq pin must be connected to v ss via an external resistor, rq, to allow the sram to monitor and adjust its output driver impedance. the value of rq must be 5x the value of the desired ram output impedance. the allowable range of rq to guarantee impeda nce matching continuously is between 175 and 350 . periodic readjustment of the output driver impedance is necessary as th e impedance is affected by drifts in supply voltage and temperature. the sram?s output impeda nce circuitry compensates for drifts in supply voltage and temperature. a clock cycle counter periodi cally triggers an impedance evaluation, resets and coun ts again. each impedance evaluation may move the output driver impedance level one step at a time towards the optimum level. the output driver is implemented with discrete binary weighted impedance steps. common i/o sigmacio ddr- ii b2 sram truth table k n ld r/ w dq operation a + 0 a + 1 1 x hi-z hi-z deselect 0 0 d@k n+1 d@ k n+1 write 0 1 q@ k n+1 or c n+1 q@k n+2 or c n+2 read note: q is controlled by k clocks if c clocks are not used.
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 12/36 ? 2005, gsi technology b2 byte write clock truth table b2 nybble write clock truth table bw bw current operation d d k (t n+1 ) k (t n+2 ) k (t n ) k (t n+1 ) k (t n+2 ) t t write dx stored if bwn = 0 in both data transfers d1 d2 t f write dx stored if bwn = 0 in 1st data transfer only d1 x f t write dx stored if bwn = 0 in 2nd data transfer only x d2 f f write abort no dx stored in either data transfer x x notes : 1. ?1? = input ?high?; ?0? = input ?low?; ?x? = input ?don?t care?; ?t? = input ?true?; ?f? = input ?false?. 2. if one or more bwn = 0, then bw = ?t?, else bw = ?f?. nw nw current operation d d k (t n+1 ) k (t n+2 ) k (t n ) k (t n+1 ) k (t n+2 ) t t write dx stored if nwn = 0 in both data transfers d1 d2 t f write dx stored if nwn = 0 in 1st data transfer only d1 x f t write dx stored if nwn = 0 in 2nd data transfer only x d2 f f write abort no dx stored in either data transfer x x notes : 1. ?1? = input ?high?; ?0? = input ?low?; ?x? = input ?don?t care?; ?t? = input ?true?; ?f? = input ?false?. 2. if one or more nwn = 0, then nw = ?t?, else nw = ?f?. *assuming stable conditions, the ram can achieve optimum impedance within 1024 cycles.
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 13/36 ? 2005, gsi technology x36 byte write enable ( bwn ) truth table bw0 bw1 bw2 bw3 d0?d8 d9?d17 d18?d26 d27?d35 1 1 1 1 don?t care don?t care don?t care don?t care 0 1 1 1 data in don?t care don?t care don?t care 1 0 1 1 don?t care data in don?t care don?t care 0 0 1 1 data in data in don?t care don?t care 1 1 0 1 don?t care don?t care data in don?t care 0 1 0 1 data in don?t care data in don?t care 1 0 0 1 don?t care data in data in don?t care 0 0 0 1 data in data in data in don?t care 1 1 1 0 don?t care don?t care don?t care data in 0 1 1 0 data in don?t care don?t care data in 1 0 1 0 don?t care data in don?t care data in 0 0 1 0 data in data in don?t care data in 1 1 0 0 don?t care don?t care data in data in 0 1 0 0 data in don?t care data in data in 1 0 0 0 don?t care data in data in data in 0 0 0 0 data in data in data in data in x18 byte write enable ( bwn ) truth table bw0 bw1 d0?d8 d9?d17 1 1 don?t care don?t care 0 1 data in don?t care 1 0 don?t care data in 0 0 data in data in x8 nybble write enable ( nwn ) truth table nw0 nw1 d0?d3 d4?d7 1 1 don?t care don?t care 0 1 data in don?t care 1 0 don?t care data in 0 0 data in data in
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 14/36 ? 2005, gsi technology b2 state diagram power-up nop load new address ddr read ddr write load read write load load load load notes: 1. the internal address burst counter is a 1 bit counter (i.e., when first address is a0, next internal burst address is a0+1). 2. ?read? refers to read active status with r/w = high, ?write? refers to write inactive status with r/w = low. 3. ?load? refers to read new address active status with ld = low, ?load ? refers to read new address inactive status with ld = high. load
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 15/36 ? 2005, gsi technology recommended oper ating conditions absolute maximum ratings (all voltages reference to v ss ) symbol description value unit v dd voltage on v dd pins ?0.5 to 2.9 v v ddq voltage in v ddq pins ?0.5 to v dd v v ref voltage in v ref pins ?0.5 to v ddq v v i/o voltage on i/o pins ?0.5 to v ddq +0.5 ( 2.9 v max.) v v in voltage on other input pins ?0.5 to v ddq +0.5 ( 2.9 v max.) v i in input current on any pin +/?100 ma dc i out output current on any i/o pin +/?100 ma dc t j maximum junction temperature 125 o c t stg storage temperature ?55 to 125 o c note: permanent damage to the device may occur if the absolute maximu m ratings are exceeded. operati on should be restricted to recomm ended operating conditions. exposure to conditi ons exceeding the recommended operating condi tions, for an extended period of time, ma y affect reliability of this component. power supplies parameter symbol min. typ. max. unit supply voltage v dd 1.7 1.8 1.9 v i/o supply voltage v ddq 1.4 ? 1.9 v reference voltage v ref 0.68 ? 0.95 v notes: 1. unless otherwise noted, all perfo rmance specifications quoted are evaluated for worst case at both 1.4 v v ddq 1.6 v (i.e., 1.5 v i/o) and 1.7 v v ddq 1.9 v (i.e., 1.8 v i/o) and quoted at whichever condition is worst case. 2. the power supplies need to be powered up simu ltaneously or in the following sequence: v dd , v ddq , v ref , followed by signal inputs. the power down sequence must be the reverse. v ddq must not exceed v dd .. operating temperature parameter symbol min. typ. max. unit ambient temperature (commercial range versions) t a 0 25 70 c ambient temperature (industrial range versions) t a ?40 25 85 c
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 16/36 ? 2005, gsi technology hstl i/o dc input characteristics parameter symbol min max units notes dc input logic high v ih (dc) v ref + 0.10 v dd + 0.3 v v 1 dc input logic low v il (dc) ?0.3 v v ref ? 0.10 v 1 notes: 1. compatible with both 1.8 v and 1.5 v i/o drivers 2. these are dc test criteria . dc design criteria is v ref 50 mv. the ac v ih /v il levels are defined separatel y for measuring timing parame - ters. 3. v il (min) dc = ?0.3 v, v il (min) ac = ?1.5 v (pulse width 3 ns). 4. v ih (max) dc = v ddq + 0.3 v, v ih (max) ac = v ddq + 0.85 v (pulse width 3 ns). hstl i/o ac input characteristics parameter symbol min max units notes ac input logic high v ih (ac) v ref + 0.20 ? v 3,4 ac input logic low v il (ac) ? v ref ? 0.20 v 3,4 v ref peak to peak ac voltage v ref (ac) ? 5% v ref (dc) v 1 notes: 1. the peak to peak ac component superimposed on v ref may not exceed 5% of the dc component of v ref . 2. to guarantee ac characteristics, v ih ,v il , trise, and tfall of inputs and clocks must be within 10% of each other. 3. for devices supplied with hstl i/o input buffers . compatible with both 1.8 v and 1.5 v i/o drivers. 20% tkhkh v ss ? 1.0 v 50% v ss v ih undershoot measurement and timing overshoot measure ment and timing 20% tkhkh v dd + 1.0 v 50% v dd v il
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 17/36 ? 2005, gsi technology ac test load diagram capacitance (t a = 25 o c, f = 1 mh z , v dd = 3.3 v) parameter symbol test conditions typ. max. unit input capacitance c in v in = 0 v 4 5 pf output capacitance c out v out = 0 v 6 7 pf clock capacitance c clk ? 5 6 pf note: this parameter is sample tested. ac test conditions parameter conditions input high level v ddq input low level 0 v max. input slew rate 2 v/ns input reference level v ddq /2 output reference level v ddq /2 note: test conditions as specified with output loading as shown unl ess otherwise noted. input and output leakage characteristics parameter symbol test conditions min. max notes input leakage current (except mode pins) i il v in = 0 to v dd ?2 ua 2 ua doff i indoff v dd v in v il 0 v v in v il ?100 ua ?2 ua 2 ua 2 ua output leakage current i ol output disable, v out = 0 to v ddq ?2 ua 2 ua dq vt = v ddq /2 50 rq = 250 (hstl i/o) v ref = 0.75 v
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 18/36 ? 2005, gsi technology programmable impedance hstl output driver dc electrical characteristics parameter symbol min. max. units notes output high voltage v oh1 v ddq /2 v ddq v 1, 3 output low voltage v ol1 vss v ddq /2 v 2, 3 output high voltage v oh2 v ddq ? 0.2 v ddq v 4, 5 output low voltage v ol2 vss 0.2 v 4, 6 notes: 1. i oh = (v ddq /2) / (rq/5) +/? 15% @ v oh = v ddq /2 (for: 175 rq 350 ). 2. i ol = (v ddq /2) / (rq/5) +/? 15% @ v ol = v ddq /2 (for: 175 rq 350 ) . 3. parameter tested with rq = 250 and v ddq = 1.5 v or 1.8 v 4. 0 rq ? 5. i oh = ?1.0 ma 6. i ol = 1.0 ma operating currents parameter symbol test conditions -333 -300 -250 -200 -167 notes 0 to 70c ? 40 to 85c 0 to 70c ? 40 to 85c 0 to 70c ? 40 to 85c 0 to 70c ? 40 to 85c 0 to 70c ? 40 to 85c operating current (x36): ddr i dd v dd = max, i out = 0 ma cycle time t khkh min 950 ma 975 ma 875 ma 900 ma 750 ma 775 ma 650 ma 675 ma 550 ma 575 ma 2, 3 operating current (x18): ddr i dd v dd = max, i out = 0 ma cycle time t khkh min 850 ma 875 ma 800 ma 825 ma 700 ma 725 ma 600 ma 625 ma 525 ma 550 ma 2, 3 operating current (x9): ddr i dd v dd = max, i out = 0 ma cycle time t khkh min 850 ma 875 ma 775 ma 800 ma 700 ma 725 ma 575 ma 600 ma 525 ma 550 ma 2, 3 operating current (x8): ddr i dd v dd = max, i out = 0 ma cycle time t khkh min 850 ma 875 ma 775 ma 800 ma 700 ma 725 ma 575 ma 600 ma 525 ma 550 ma 2, 3 standby current (nop): ddr i sb1 device deselected, i out = 0 ma, f = max, all inputs 0.2 v or v dd ? 0.2 v 300 ma 310 ma 290 ma 300 ma 255 ma 265 ma 245 ma 255 ma 300 ma 310 ma 2, 4 notes: 1. power measured with output pins floating. 2. minimum cycle, i out = 0 ma 3. operating current is calculated wi th 50% read cycles and 50% write cycles. 4. standby current is only after all pending read and write burst operations are completed.
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 19/36 ? 2005, gsi technology ac electrical characteristics parameter symbol -333 -300 -250 -200 -167 units notes min max min max min max min max min max clock k, k clock cycle time c, c clock cycle time t khkh t chch 3.0 4.5 3.3 4.5 4.0 8.4 5.0 8.4 6.0 8.4 ns ttkc variable t kcvar ? 0.2 ? 0.2 ? 0.2 ? 0.2 ? 0.2 ns 5 k, k clock high pulse width c, c clock high pulse width t khkl t chcl 1.2 ? 1.32 ? 1.6 ? 2.0 ? 2.4 ? ns k, k clock low pulse width c, c clock low pulse width t klkh t clch 1.2 ? 1.32 ? 1.6 ? 2.0 ? 2.4 ? ns k to k high c to c high t kh k h t ch c h 1.35 ? 1.49 ? 1.8 ? 2.2 ? 2.7 ? ns k to k high c to c high t k hkh t c hch 1.35 ? 1.49 ? 1.8 ? 2.2 ? 2.7 ? ns k, k clock high to c, c clock high t khch 0 1.3 0 1.45 0 1.8 0 2.3 0 2.8 ns dll lock time t kclock 1024 ? 1024 ? 1024 ? 1024 ? 1024 ? cycle 6 k static to dll reset t kcreset 30 ? 30 ? 30 ? 30 ? 30 ? ns output times k, k clock high to data output valid c, c clock high to data output valid t khqv t chqv ? 0.45 ? 0.45 ? 0.45 ? 0.45 ? 0.5 ns 3 k, k clock high to data output hold c, c clock high to data output hold t khqx t chqx ?0.45 ? ?0.45 ? ?0.45 ? ?0.45 ? ?0.5 ? ns 3 k, k clock high to echo clock valid c, c clock high to echo clock valid t khcqv t chcqv ? 0.45 ? 0.45 ? 0.45 ? 0.45 ? 0.5 ns k, k clock high to echo clock hold c, c clock high to echo clock hold t khcqx t chcqx ?0.45 ? ?0.45 ? ?0.45 ? ?0.45 ? ?0.5 ? ns cq, cq high output valid t cqhqv ? 0.25 ? 0.27 ? 0.30 ? 0.35 ? 0.40 ns 7 cq, cq high output hold t cqhqx ?0.25 ? ?0.27 ? ?0.30 ? ?0.35 ? ?0.40 ? ns 7 cq phase distortion t cqh cq h t cq hcqh 1.10 ? 1.24 ? 1.55 ? 1.95 ? 2.45 ? ns k clock high to data output high-z c clock high to data output high-z t khqz t chqz ? 0.45 ? 0.45 ? 0.45 ? 0.45 ? 0.5 ns 3 k clock high to data output low-z c clock high to data output low-z t khqx1 t chqx1 ?0.45 ? ?0.45 ? ?0.45 ? ?0.45 ? ?0.5 ? ns 3 setup times address input setup time t avkh 0.4 ? 0.4 ? 0.5 ? 0.6 ? 0.7 ? ns control input setup time t ivkh 0.4 ? 0.4 ? 0.5 ? 0.6 ? 0.7 ? ns 2 data input setup time t dvkh 0.28 ? 0.3 ? 0.35 ? 0.4 ? 0.5 ? ns
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 20/36 ? 2005, gsi technology hold times address input hold time t khax 0.4 ? 0.4 ? 0.5 ? 0.6 ? 0.7 ? ns control input hold time t khix 0.4 ? 0.4 ? 0.5 ? 0.6 ? 0.7 ? ns data input hold time t khdx 0.28 ? 0.3 ? 0.35 ? 0.4 ? 0.5 ? ns notes: 1. all address inputs must meet the specified setup and hold times for all latching clock edges. 2. control singles are r , w , bw0 , bw1 , and ( nw0 , nw1 for x8) and ( bw2 , bw3 for x36). 3. if c, c are tied high, k, k become the references for c, c timing parameters 4. to avoid bus contention, at a given volt age and temperature tchqx1 is bigger than t chqz. the specs as shown do not imply bus contention because tchqx1 is a min parameter that is worst case at totally different test conditions (0 c, 1.9 v) than tchqz, which is a max parameter (worst case at 70 c, 1.7 v). it is not possible for two srams on the same board to be at such different voltages and temperatures. 5. clock phase jitter is the variance from clock ri sing edge to the next expected clock rising edge. 6. v dd slew rate must be less than 0.1 v dc per 50 ns for dll lock retention. dll lock time begins once v dd and input clock are stable. 7. echo clock is very tightly controlled to data valid/data hold. by design, there is a 0.1 ns variation from echo clock to dat a. the datasheet parameters reflect tester guard bands and test setup variations. ac electrical character istics (continued) parameter symbol -333 -300 -250 -200 -167 units notes min max min max min max min max min max
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 21/36 ? 2005, gsi technology c and c controlled read fi rst timing diagram nop read a read b nop write c read d a b c d c c+1 a a+1 b b+1 c c+1 cqhqx cqhqv chcqv chcqx khdx dvkh chqx chqx1 chqv khnkh klkh klkh khkl khkl khkh khkh khix ivkh khix ivkh khix ivkh khax avkh khnkh klkh klkh khkl khkl khkh khkh k k address ld r/w bwx c c dq cq cq
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 22/36 ? 2005, gsi technology k and k controlled read first timing diagram nop read a read b nop write c read d a b c d c c+1 a a+1 b b+1 c c+1 cqhqx cqhqv khcqv khcqx khcqv khcqx khdx dvkh khqx khqv khqx1 khbx bvkh khbx bvkh khbx bvkh khax avkh khnkh klkh klkh khkl khkl khkh khkh k k address ld r/w bwx dq1 cq cq
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 23/36 ? 2005, gsi technology c and c controlled write first timing diagram nop write a read b read c nop write d nop a b c d e a a+1 d d+1 a a+1 b b+1 c c+1 d d+1 cqhqx cqhqv chcqv chcqx chcqv chcqx chqx chqv chqx1 khdx dvkh khnkh klkh klkh khkl khkl khkh khkh khix ivkh khix ivkh khix ivkh khax avkh khnkh klkh klkh khkl khkl khkh khkh k k address ld r/w bwx c c dq cq cq
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 24/36 ? 2005, gsi technology k and k controlled write first timing diagram nop write a read b read c nop write d nop a b c d e a a+1 d d+1 a a+1 b b+1 c c+1 d d+1 cqhqx cqhqv khcqv khcqx khcqv khcqx khqx khqv khqx1 khdx dvkh khbx bvkh khbx bvkh khbx bvkh khax avkh khnkh klkh klkh khkl khkl khkh khkh k k address ld r/w bwx dq cq cq
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 25/36 ? 2005, gsi technology jtag port operation overview the jtag port on this ram operates in a manner that is compliant with ieee standard 1149.1-1990, a serial boundary scan interface standard (commonly referred to as jtag). the jtag port input inte rface levels scale with v dd . the jtag output drivers are powered by v ddq . disabling the jtag port it is possible to use this device without utilizing the jtag port. the port is reset at power-up and will remain inactive unles s clocked. tck, tdi, and tms are designed with internal pull-up circuits.to assure normal operation of the ram with the jtag port unused, tck, tdi, and tms may be left floating or tied to either v dd or v ss . tdo should be left unconnected. jtag port registers overview the various jtag registers, refered to as test access port ortap registers, are select ed (one at a time) via the sequences of 1 s and 0s applied to tms as tck is strobed. each of the tap regist ers is a serial shift register that captures serial input data o n the rising edge of tck and pushes serial data out on the next falling edge of tck. when a register is selected, it is placed betwe en the tdi and tdo pins. instruction register the instruction register holds the instructi ons that are executed by the ta p controller when it is moved into the run, test/idl e, or the various data register states. instructions are 3 bits long. th e instruction register can be lo aded when it is placed betwee n the tdi and tdo pins. the instruction register is automatically preloa ded with the idcode instruction at power-up or whenever the controller is placed in test-logic-reset state. bypass register the bypass register is a single bit register that can be placed between tdi and tdo. it allows serial test data to be passed th rough the ram?s jtag port to another device in the scan chain with as little delay as possible. jtag pin descriptions pin pin name i/o description tck test clock in clocks all tap events. all i nputs are captured on the rising edge of tck and all outputs propagate from the falling edge of tck. tms test mode select in the tms input is sampled on the rising edge of tck. this is the command input for the tap controller state machine. an undriven tms input wi ll produce the same result as a logic one input level. tdi test data in in the tdi input is sampled on the rising edge of tck. this is the input side of the serial registers placed between tdi and tdo. the register pl aced between tdi and tdo is determined by the state of the tap controller state machine and the instruction that is currently loaded in the tap instruction register (refer to the tap controll er state diagram). an undriven tdi pin will produce the same result as a logic one input level. tdo test data out out output that is active depending on the state of the tap state machine. output changes in response to the falling edge of tck. this is the out put side of the serial registers placed between tdi and tdo. note: this device does not have a trst (tap rese t) pin. trst is optional in ieee 1149.1. the test-logic-reset state is entered while tms is held high for five rising edges of tck. the tap cont roller is also reset automaticly at power-up.
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 26/36 ? 2005, gsi technology boundary scan register the boundary scan register is a collection of flip flops that can be preset by the logic level found on the ram?s input or i/o pins. the flip flops are then daisy chained togeth er so the levels found can be shifted seri ally out of the jtag port?s tdo pin. the boundary scan register also includes a number of place holder flip fl ops (always set to a logic 1). the relationship between t he device pins and the bits in the boundary scan register is de scribed in the scan order table following. the boundary scan register, under the control of the tap contro ller, is loaded with the contents of the rams i/o ring when the controller is in capture-dr state and then is placed between the tdi and tdo pins when the controller is moved to shift- dr state. sample-z, sample/preload and extest instructions can be us ed to activate the boundary scan register. jtag tap block diagram identification (id) register the id register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in capture-dr state with the idcode command loaded in the instruction re gister. the code is loaded from a 32-bit on-chip rom. it describes various attributes of the ram as indicated below. the register is then placed between the tdi and tdo pins when th e controller is moved into shift- dr state. bit 0 in the register is the lsb and the first to reach tdo when shifting begins. instruction register id code register boundary scan register 0 1 2 0 31 30 29 1 2 0 bypass register tdi tdo tms tck test access port (tap) controller 108 1 0 control signals
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 27/36 ? 2005, gsi technology tap controller instruction set overview there are two classes of instructions defined in the standard 1149.1-1990; the standard (public) instructions, and device speci fic (private) instructions. some public instructions are mandator y for 1149.1 compliance. optional public instructions must be implemented in prescribed ways. the tap on th is device may be used to monitor all inpu t and i/o pads, and can be used to load address, data or control signals into the ram or to preload the i/o buffers. when the tap controller is placed in captur e-ir state the two least significant bits of the instruction regi ster are loaded wit h 01. when the controller is moved to the shift-ir state the instructi on register is placed between tdi and tdo. in this state the de sired instruction is serially loaded through the tdi input (while the previous contents are shifted out at tdo). for all instructions , the tap executes newly loaded instruct ions only when the controller is moved to update-ir state. the tap instruction set for this device is listed in the following table. id register contents not used gsi technology jedec vendor id code presence register bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 x x x x x x x x x x x x x x x x x x x x 0 0 0 1 1 0 1 1 0 0 1 1
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 28/36 ? 2005, gsi technology jtag tap controller state diagram instruction descriptions bypass when the bypass instruction is loaded in the instruction register the bypass regi ster is placed between tdi and tdo. this occurs when the tap controller is moved to the shift-dr state. this allows the board level scan path to be shortened to facili - tate testing of other devices in the scan path. sample/preload sample/preload is a standard 1149.1 mandatory public in struction. when the sample / preload instruction is loaded in the instruction register, moving the tap controller into the capture-dr state loads the data in the rams input and i/o buffers into the boundary scan register. boundary scan regist er locations are not associated with an input or i/o pin, and are loaded with the default stat e identified in the boundary s can chain table at the end of th is section of the datasheet. beca use the ram clock is independent from the tap clock (tck) it is possible for the tap to attempt to capture the i/o ring contents while the input buffers are in transition (i.e. in a metastable state). although allowing the tap to sample metastable inputs w ill not harm the device, repeatable results cannot be expected. ram input signals must be stabilized for long enough to meet the taps input data capture set-up plus hold time (tts plus tth) . the rams clock inputs need not be paused for any other tap operation except capturing the i/o ring contents into the boundary s can register. moving the contro ller to shift-dr state then places the boundary scan register between the tdi and tdo pins. extest extest is an ieee 1149.1 mandatory public instruction. it is to be executed whenever the instru ction register is loaded with all logic 0s. the extest command does not block or override th e ram?s input pins; therefore, the ram?s internal state is still determined by its input pins. select dr capture dr shift dr exit1 dr pause dr exit2 dr update dr select ir capture ir shift ir exit1 ir pause ir exit2 ir update ir test logic reset run test idle 0 0 1 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 10 0 0 1 11 1
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 29/36 ? 2005, gsi technology typically, the boundary scan re gister is loaded with the desired pattern of data with the sample/preload command. then the extest command is used to outp ut the boundary scan register?s contents, in parallel, on the ram?s data output drivers on the falling edge of tck when the controller is in the update-ir state. alternately, the boundary scan register may be loaded in parallel using the extest command. when the extest instruc - tion is selected, the sate of all the ram?s input and i/o pins, as well as the default values at scan register locations not as so - ciated with a pin, are transfer red in parallel into the boundary scan regist er on the rising edge of tck in the capture-dr state, the ram?s output pins drive out the value of the boundar y scan register location with which each output pin is associ - ated. idcode the idcode instruction causes the id rom to be loaded into the id register when the controller is in capture-dr mode and places the id register between the tdi a nd tdo pins in shift-dr mode. the idcode instruction is the default instruction loaded in at power up and any time the controller is placed in the test-logic-reset state. sample-z if the sample-z instruction is loaded in the instruction register, all ram outputs are forced to an inactiv e drive state (high- z) and the boundary scan register is connected between tdi and t do when the tap controller is moved to the shift-dr state. rfu these instructions are reserved fo r future use. in this device they replicate the bypass instruction. jtag tap instruction set summary instruction code description notes extest 000 places the boundary scan re gister between tdi and tdo. 1 idcode 001 preloads id register and places it between tdi and tdo. 1, 2 sample-z 010 captures i/o ring contents. places the b oundary scan register between tdi and tdo. forces all ram output driv ers to high-z except cq. 1 rfu 011 do not use this instruction; reserved for future use. replicates bypass instruction. places bypass register between tdi and tdo. 1 sample/ preload 100 captures i/o ring contents. places the b oundary scan register between tdi and tdo. 1 gsi 101 gsi private instruction. 1 rfu 110 do not use this instruction; reserved for future use. replicates bypass instruction. places bypass register between tdi and tdo. 1 bypass 111 places bypass register between tdi and tdo. 1 notes: 1. instruction codes expressed in binary, msb on left, lsb on right. 2. default instruction automatically loaded at power-up and in test-logic-reset state.
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 30/36 ? 2005, gsi technology jtag port recommended operating conditions and dc characteristics parameter symbol min. max. unit notes test port input low voltage v ilj ? 0.3 0.3 * v dd v 1 test port input high voltage v ihj 0.6 * v dd v dd +0.3 v 1 tms, tck and tdi input leakage current i inhj ? 300 1 ua 2 tms, tck and tdi input leakage current i inlj ? 1 100 ua 3 tdo output leakage current i olj ? 1 1 ua 4 test port output high voltage v ohj v dd ? 200 mv ? v 5, 6 test port output low voltage v olj ? 0.4 v 5, 7 test port output cmos high v ohjc v dd ? 100 mv ? v 5, 8 test port output cmos low v oljc ? 100 mv v 5, 9 notes: 1. input under/overshoot voltage must be ? 1 v < vi < v ddn +1 v not to exceed 2.9 v maximum, with a pulse width not to exceed 20% ttkc. 2. v ilj v in v ddn 3. 0 v v in v iljn 4. output disable, v out = 0 to v ddn 5. the tdo output driver is served by the v dd supply. 6. i ohj = ? 2 ma 7. i olj = + 2 ma 8. i ohjc = ?100 ua 9. i oljc = +100 ua notes: 1. include scope and jig capacitance. 2. test conditions as shown unless otherwise noted. jtag port ac test conditions parameter conditions input high level v dd ? 0.2 v input low level 0.2 v input slew rate 1 v/ns input reference level v ddq /2 output reference level v ddq /2 dq v ddq /2 50 30pf * jtag port ac test load * distributed test jig capacitance
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 31/36 ? 2005, gsi technology jtag port timing diagram jtag port ac electri cal characteristics parameter symbol min max unit tck cycle time ttkc 50 ? ns tck low to tdo valid ttkq ? 20 ns tck high pulse width ttkh 20 ? ns tck low pulse width ttkl 20 ? ns tdi & tms set up time tts 10 ? ns tdi & tms hold time tth 10 ? ns tth tts ttkq tth tts tth tts ttkl ttkl ttkh ttkh ttkc ttkc tck tdi tms tdo parallel sram input
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 32/36 ? 2005, gsi technology package dimensions?165-bump fpbga (package e) ordering information?gsi sigmacio ddr-ii sram org part number1 type package speed (m hz) ta 2 8m x 8 gs8662t08e-333 sigmacio ddr-ii b2 sram 165-bump bga 333 c 8m x 8 gs8662t08e-300 sigmacio ddr-ii b2 sram 165-bump bga 300 c 8m x 8 gs8662t08e-250 sigmacio ddr-ii b2 sram 165-bump bga 250 c notes: 1. for tape and reel add the character ?t? to the end of the part number . example: gs866x36e-300t. 2. ta = c = commercial temperature range. t a = i = industrial temperature range. a b c d e f g h j k l m n p r a b c d e f g h j k l m n p r 1 2 3 4 5 6 7 8 9 10 11 11 10 9 8 7 6 5 4 3 2 1 a1 corner top view a1 corner bottom view 1.0 1.0 10.0 1.0 1.0 14.0 150.05 170.05 a b 0.20(4x) ?0.10 ?0.25 c c a b m m ?0.40~0.60 (165x) c seating plane 0.20 c 0.36~0.46 1.50 max. t h i s p a c k a g e d r a w i n g i s c u r r e n t l y b e i n g u p d a t e d . p l e a s e v i e w t h e c o r r e c t p a c k a g e d r a w i n g a t : h t t p : / / w w w . g s i t e c h n o l o g y . c o m / p a c k ag e s . h t m .
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 33/36 ? 2005, gsi technology 8m x 8 gs8662t08e-200 sigmacio ddr-ii b2 sram 165-bump bga 200 c 8m x 8 gs8662t08e-167 sigmacio ddr-ii b2 sram 165-bump bga 167 c 8m x 8 gs8662t08e-333i sigmacio ddr-ii b2 sram 165-bump bga 333 i 8m x 8 gs8662t08e-300i sigmacio ddr-ii b2 sram 165-bump bga 300 i 8m x 8 gs8662t08e-250i sigmacio ddr-ii b2 sram 165-bump bga 250 i 8m x 8 gs8662t08e-200i sigmacio ddr-ii b2 sram 165-bump bga 200 i 8m x 8 gs8662t08e-167i sigmacio ddr-ii b2 sram 165-bump bga 167 i 8m x 9 GS8662T09E-333 sigmacio ddr-ii b2 sram 165-bump bga 333 c 8m x 9 gs8662t09e-300 sigmacio ddr-ii b2 sram 165-bump bga 300 c 8m x 9 gs8662t09e-250 sigmacio ddr-ii b2 sram 165-bump bga 250 c 8m x 9 gs8662t09e-200 sigmacio ddr-ii b2 sram 165-bump bga 200 c 8m x 9 gs8662t09e-167 sigmacio ddr-ii b2 sram 165-bump bga 167 c 8m x 9 GS8662T09E-333i sigmacio ddr-ii b2 sram 165-bump bga 333 i 8m x 9 gs8662t09e-300i sigmacio ddr-ii b2 sram 165-bump bga 300 i 8m x 9 gs8662t09e-250i sigmacio ddr-ii b2 sram 165-bump bga 250 i 8m x 9 gs8662t09e-200i sigmacio ddr-ii b2 sram 165-bump bga 200 i 8m x 9 gs8662t09e-167i sigmacio ddr-ii b2 sram 165-bump bga 167 i 4m x 18 gs8662t18e-333 sigmacio ddr-ii b2 sram 165-bump bga 333 c 4m x 18 gs8662t18e-300 sigmacio ddr-ii b2 sram 165-bump bga 300 c 4m x 18 gs8662t18e-250 sigmacio ddr-ii b2 sram 165-bump bga 250 c 4m x 18 gs8662t18e-200 sigmacio ddr-ii b2 sram 165-bump bga 200 c 4m x 18 gs8662t18e-167 sigmacio ddr-ii b2 sram 165-bump bga 167 c 4m x 18 gs8662t18e-333i sigmacio ddr-ii b2 sram 165-bump bga 333 i 4m x 18 gs8662t18e-300i sigmacio ddr-ii b2 sram 165-bump bga 300 i 4m x 18 gs8662t18e-250i sigmacio ddr-ii b2 sram 165-bump bga 250 i 4m x 18 gs8662t18e-200i sigmacio ddr-ii b2 sram 165-bump bga 200 i 4m x 18 gs8662t18e-167i sigmacio ddr-ii b2 sram 165-bump bga 167 i 2m x 36 gs8662t36e-333 sigmacio ddr-ii b2 sram 165-bump bga 333 c 2m x 36 gs8662t36e-300 sigmacio ddr-ii b2 sram 165-bump bga 300 c 2m x 36 gs8662t36e-250 sigmacio ddr-ii b2 sram 165-bump bga 250 c 2m x 36 gs8662t36e-200 sigmacio ddr-ii b2 sram 165-bump bga 200 c ordering information?gsi sigmacio ddr-ii sram org part number1 type package speed (mhz) ta 2 notes: 1. for tape and reel add the character ?t? to the end of the part number. example: gs866x36e-300t. 2. ta = c = commercial temperature range. ta = i = industrial temperature range.
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 34/36 ? 2005, gsi technology 2m x 36 gs8662t36e-167 sigmacio ddr-ii b2 sram 165-bump bga 167 c 2m x 36 gs8662t36e-333i sigmacio ddr-ii b2 sram 165-bump bga 333 i 2m x 36 gs8662t36e-300i sigmacio ddr-ii b2 sram 165-bump bga 300 i 2m x 36 gs8662t36e-250i sigmacio ddr-ii b2 sram 165-bump bga 250 i 2m x 36 gs8662t36e-200i sigmacio ddr-ii b2 sram 165-bump bga 200 i 2m x 36 gs8662t36e-167i sigmacio ddr-ii b2 sram 165-bump bga 167 i 8m x 8 gs8662t08ge-333 sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 333 c 8m x 8 gs8662t08ge-300 sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 300 c 8m x 8 gs8662t08ge-250 sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 250 c 8m x 8 gs8662t08ge-200 sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 200 c 8m x 8 gs8662t08ge-167 sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 167 c 8m x 8 gs8662t08ge-333i sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 333 i 8m x 8 gs8662t08ge-300i sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 300 i 8m x 8 gs8662t08ge-250i sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 250 i 8m x 8 gs8662t08ge-200i sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 200 i 8m x 8 gs8662t08ge-167i sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 167 i 8m x 9 gs8662t09ge-333 sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 333 c 8m x 9 gs8662t09ge-300 sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 300 c 8m x 9 gs8662t09ge-250 sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 250 c 8m x 9 gs8662t09ge-200 sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 200 c 8m x 9 gs8662t09ge-167 sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 167 c 8m x 9 gs8662t09ge-333i sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 333 i 8m x 9 gs8662t09ge-300i sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 300 i 8m x 9 gs8662t09ge-250i sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 250 i 8m x 9 gs8662t09ge-200i sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 200 i 8m x 9 gs8662t09ge-167i sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 167 i 4m x 18 gs8662t18ge-333 sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 333 c 4m x 18 gs8662t18ge-300 sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 300 c 4m x 18 gs8662t18ge-250 sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 250 c 4m x 18 gs8662t18ge-200 sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 200 c 4m x 18 gs8662t18ge-167 sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 167 c ordering information?gsi sigmacio ddr-ii sram org part number1 type package speed (mhz) ta 2 notes: 1. for tape and reel add the character ?t? to the end of the part number. example: gs866x36e-300t. 2. ta = c = commercial temperature range. ta = i = industrial temperature range.
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 35/36 ? 2005, gsi technology 4m x 18 gs8662t18ge-333i sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 333 i 4m x 18 gs8662t18ge-300i sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 300 i 4m x 18 gs8662t18ge-250i sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 250 i 4m x 18 gs8662t18ge-200i sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 200 i 4m x 18 gs8662t18ge-167i sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 167 i 2m x 36 gs8662t36ge-333 sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 333 c 2m x 36 gs8662t36ge-300 sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 300 c 2m x 36 gs8662t36ge-250 sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 250 c 2m x 36 gs8662t36ge-200 sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 200 c 2m x 36 gs8662t36ge-167 sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 167 c 2m x 36 gs8662t36ge-333i sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 333 i 2m x 36 gs8662t36ge-300i sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 300 i 2m x 36 gs8662t36ge-250i sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 250 i 2m x 36 gs8662t36ge-200i sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 200 i 2m x 36 gs8662t36ge-167i sigmacio ddr-ii b2 sram rohs-compliant 165-bump bga 167 i ordering information?gsi sigmacio ddr-ii sram org part number1 type package speed (mhz) ta 2 notes: 1. for tape and reel add the character ?t? to the end of the part number. example: gs866x36e-300t. 2. ta = c = commercial temperature range. ta = i = industrial temperature range.
gs8662t08/09/18/36e-333/300/250/200/167 specifications cited are subject to change without notice . for latest documentation see http://www.gsitechnology.com. rev: 1.07 12/2007 36/36 ? 2005, gsi technology revision history rev. code: old; new types of changes format or content revisions gs8662txx_r1 format ? creation of new datasheet gs8662txx_r1; gs8662txx_r1_01 content ? added rohs-compliant information gs8662txx_r1_01; gs8662txx_r1_02 content ? updated max tkhkh gs8662txx_r1_02; gs8662txx_r1_03 content ? updated tkh k h, tkhch in ac char table ? added t k hkh and cq phase distortion to ac char table gs8662txx_r1_03; gs8662txx_r1_04 content ? added cz data ? updated i/o supply voltage data ? updated power-up sequence information gs8662txx_r1_04, gs8662txx_r1_05 content ? changed separate read and write pins to one r/w-bar pin. gs8662txx_r1_05; gs8662txx_r1_06 content ? updated status to pq gs8662txx_r1_06; gs8662txx_r1_07 content ? added v ref note to pin description table ? updated flxdrive-ii output dr iver impedance control section ? removed preliminary banner due to production status ? removed 267 mhz speed bin (t)


▲Up To Search▲   

 
Price & Availability of GS8662T09E-333

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X